Home Work III

- 1. Let a, b be positive numbers. Show that $a < b$ iff $a^2 < b^2$. (Is it true if $a < 0$?)
- 2. Let b, c be real numbers. Show that the quadratic equation x^2 -2bx +c = 0 is solvable in R (in the sense that it has one or more real solution) iff b^2 -c is nonnegative. (Hint: make use "perfect square")
- 3. Let z, a be positive be such that $z^2 > a$. Show that there exists a natural number m such that $(1/m) < z$ and $(z - 1/m)^2 > a$.
- 4. Let z, a be positive be such that z^2 < a. Show that there exists a natural number' n such that $(z + 1/n)^{2} < a$.
- 5^* Let a be positive and let B consist of all positive real numbers x with $x^2 > a$. Show that B is nonempty and $z = \inf B$ exists in R. Show further that $z^2 = a$.
- 6. Let a > 0. Similar to Q5 but use suitable set A and sup A to show the existence of the positive square root of a.
- 7. Show

$$
|1x1-1y1| \leq |x-y1| \leq |x11|y1 \quad \forall x,y \in \mathbb{R}
$$

and describe when the inequality is strict. Sketch/interpret your results geometrically.

8*. Solve the inequality system (in the sense to identify the "solution set" A, the set consisting of all x satisfying the inequalities):

$$
4 < |x+z| + |x-1| \leq 5.
$$

 $(A =$ the union of $(-3, -5/2)$ and $(3/2, 2])$. Hint: subdivide into subintervals in order to remove the absolute value sighs

9^{*}. Let y and t be real numbers. Show that following assertions:

(a)
$$
7f
$$
 161 < 10 and $|y-t| < 3$ 12. $|y-t| < 3$ 12. $|y-t| < \frac{1}{2}$ 12. $|y| < 13$ 13.

10. Show by MI the binomial formula
\n
$$
\left(a+b\right)^{n} = \left(\begin{array}{c} n \\ k \end{array}\right) \left(\begin{array}{c} n-1 \\ l \end{array}\right) \left(\begin{array}{c} n-2 \\ k \end{array}\right) \left(\begin{array}{c} n-2 \\ k \end{array}\right) \left(\begin{array}{c} n-k \\ n-k \end{array}\right) \left(\begin{array}{c} n-k \\ k \end{array}\right) \left(\begin{array}{c} n-k \\ k
$$

and, for $a > 0$ show that

$$
\left(\left(\left(\mathfrak{t}\alpha\right)^{n}\right)>\left(1+n\alpha\right)
$$

 ω_{d}

and
\n
$$
(1+a)^{n}
$$
 \geq $\frac{n(n-1)(n-2)}{3!}a^{2}$ $\neq n \geq 3$
\nSo $\frac{n^{2}}{(1+a)^{n}} \geq 0$ and $n \geq \infty$. $\sqrt{3}$ \therefore $\frac{n^{1000}}{(1.0061)^{n}} \to 0$